The Impact of Canva's Generative AI Tools on Visual Identity Formation: An Analytical Study
DOI:
https://doi.org/10.56989/benkj.v5i12.1640Keywords:
Canva, Visual Identity, Generative Artificial Intelligence, Graphic Design, Visual Authenticity, Visual Consistency, Human CreativityAbstract
This analytical study aims to evaluate the impact of integrating Generative Artificial Intelligence (AI) tools within the Canva platform on the process of forming visual identity for various brands and projects. This research gains importance due to the notable increase in reliance on smart design tools and their accessibility to non-specialists, raising fundamental questions about the capacity of these tools to achieve cohesion, authenticity, and visual consistency in design outputs. The study's primary objective was to examine the extent to which Canva tools contribute to either supporting or undermining the distinctive characteristics of visual identity, alongside providing a critical assessment of the resulting aesthetic and functional impact. The research employed a critical analytical methodology, which involved analyzing the tools' functions through actual usage and examining real-world application models, as well as an in-depth review of relevant scientific literature. The findings concluded that Canva tools significantly contribute to facilitating and generating visual identity elements; however, they may produce superficial and individuality-lacking identities in the absence of specialized creative direction.
Metrics
References
المراجع العربية:
الكردي، محمد، إ. ع. (2025). ثورة الذكاء الصناعي وأثرها على الإبداع والتصميم. مجلة التراث والتصميم .5(28)، 49–59.
خصاونة، ف.، الشبول، م.، والسعايدة، ر. (2025). تأثير استخدام منصة Midjourney على تطوير مهارات تصميم الشخصيات المتحركة بين طلاب تصميم الوسائط المتعددة. المجلة الدولية لتقنيات الهواتف المحمولة التفاعلية .19(3) ،141–169.
المراجع الأجنبية:
Al-Fahad, Z. (2025). Strategic human input in brand communication: The role of narrative depth in AI-generated content. Journal of Brand Strategy, 14(1), 45–60.
Aryan, V. (2023). Using Canva AI to build a brand identity without a design degree. Medium.
Brandsma, N. (2024). The future of brand identity: How Generative AI is reshaping the visual landscape. Master’s thesis, University of Amsterdam. Amsterdam University of Applied Sciences.
Canva. (n.d.). Brand Kit Features. Retrieved October 22, 2024, from https://www.canva.com/features/brand-kit/
Chen, L., & Wang, Y. (2024). Constraints of large language models in symbolic representation and stylistic control. International Journal of Computational Linguistics, 55(2), 112–130.
Cho, S., & Lee, J. (2024). Impact of generative models on design uniqueness and interface aesthetics. Journal of Computer-Aided Design, 60(1), 112–129.
Chong, L., & Yang, M. (2023). AI vs. human: The public's perceptions of the design abilities of artificial intelligence. Proceedings of the Design Society, 3, 495–504.
Garcia, M. (2025). The critical challenge of symbolic representation in automated design templates. Visual Communication Quarterly, 32(1), 45–60.
Gehred, A. P. (2020). Canva. Journal of the Medical Library Association (JMLA), 108(2), 338.
Hansen, T., & Munk, R. (2025). The challenge of authenticity in applied visual identity systems. Design Management Journal, 16(2), 145–160.
Jerbić, B., Švaco, M., Šuligoj, F., Šekoranja, B., Vidaković, J., Turković, M., & Bušić, B. (2022b). Interspecies collaboration in the design of visual identity. Journal of Visual Communication in Design, 44(3), 234–248.
Jerbić, B., Švaco, M., Šuligoj, F., Šekoranja, B., Vidaković, J., Turković, M., ... & Bušić, B. (2022a). Hybrid intelligence for visual identity design: A case study. In K. Kozłowski, M. Głowacki, & R. Jabłoński (Eds.), International Conference on Intelligent Autonomous Systems (pp. 661–670). Springer Nature Switzerland.
Jia, S., Zhang, Y., Wu, J., & Xu, M. (2023). Hierarchical diffusion transformer for flexible visual layout generation. ACM Transactions on Graphics, 42(4), 1–13.
Keller, K. L. (2016). Strategic brand management (5th ed.). Pearson Education.
Lee, S., & Kim, H. (2023). Evaluating the professional quality of generative AI outputs in visual communication design. Journal of Design Research, 20(4), 312–328.
Petersen, R. (2023). Usability vs. originality: The trade-off in AI-powered design tools. Design Studies Review, 44(3), 88–105.
Smith, B. (2023). The paradox of efficiency: Generative AI and the homogenization of design output. Design Theory Review, 8(3), 201–218.
Wong, V. (2023). Democratizing branding: The role of digital design platforms in brand consistency. Journal of Digital Communication, 9(3), 88–105.
Zheng, Q. (2024). Challenges in controlling diffusion models for brand imagery generation. AI and Graphics Review, 11(1), 55–70.
Zhou, J., Chen, Y., & Lau, M. (2024). Co-designing with AI: Nonlinear interaction models for creative systems. Design Studies, 85, 102536.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ibn Khaldoun Journal for Studies and Researches

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





















ElDjawda Soft